Abstract

The energy contributions of electrostatic, van der Waals interactions, hydrogen bonds, and interactions of charge transfer type to the enthalpy of complex formation of the double-stand DNA with the antitumor antibiotics daunomycin, nogalamycin, and novantron, as well as the mutagens ethidium bromide and proflavine have been calculated. According to the calculations, the van der Waals component (except for nogalamycin) is energetically favorable during complex formation of the antibiotics with DNA, and the contributions of H bonds and electrostatic interactions are unfavorable, with the probability of charge transfer in the complexes being low. It has been shown that the relatively low value of the experimental enthalpy of binding is the sum of components greater in absolute value and different in the sign, which is the cause of large errors in estimating the total enthalpy of complex formation of aromatic ligands with DNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.