Abstract

Venous thromboembolism (VTE) is a challenging clinical obstacle in oncological settings, marked by elevated incidence rates and resulting morbidity and mortality. In the context of cancer-associated thrombosis (CAT), endothelial dysfunction (ED) plays a crucial role in promoting a pro-thrombotic environment as endothelial cells lose their ability to regulate blood flow and coagulation. Moreover, emerging research suggests that this disorder may not only contribute to CAT but also impact tumorigenesis itself. Indeed, a dysfunctional endothelium may promote resistance to therapy and favour tumour progression and dissemination. While extensive research has elucidated the multifaceted mechanisms of ED pathogenesis, the genetic component remains a focal point of investigation. This comprehensive narrative review thus delves into the genetic landscape of ED and its potential ramifications on cancer progression. A thorough examination of genetic variants, specifically polymorphisms, within key genes involved in ED pathogenesis, namely eNOS, EDN1, ACE, AGT, F2, SELP, SELE, VWF, ICAM1, and VCAM1, was conducted. Overall, these polymorphisms seem to play a context-dependent role, exerting both oncogenic and tumour suppressor effects depending on the tumour and other environmental factors. In-depth studies are needed to uncover the mechanisms connecting these DNA variations to the pathogenesis of malignant diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.