Abstract

In addition to classical G protein-coupled receptors (GPCRs), a group of alternative, “silent” chemokine receptors has recently been identified. These serpentine molecules are not coupled to G proteins and subsequent signaling cascades, but can efficiently internalize their cognate chemokine ligands, thus act as “interceptors” (internalizing receptors). Here we discuss a mechanism by which a member of this family, Duffy antigen (DARC), contributes to chemokine-induced leukocyte emigration. Cumulative experimental evidence suggests that DARC on venular endothelium mediates chemokine internalization at the abluminal surface followed by transcytosis and transfer of the chemokine cargo onto the luminal surface. DARC is also expressed on the erythrocyte surface of DARC positive individuals. Erythrocyte DARC binds plasma chemokines which results, on one hand, in impediment of the chemokines loss from the circulation and, on the other hand, in neutralization of chemokines in the blood. This leads to leukocyte protection from inadvertent “desensitization” and enhancement of leukocyte recruitment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.