Abstract

We develop a model of interacting zwitterionic membranes with rotating surface dipoles immersed in a monovalent salt and implement it in a field theoretic formalism. In the mean-field regime of monovalent salt, the electrostatic forces between the membranes are characterized by a non-uniform trend: at large membrane separations, the interfacial dipoles on the opposing sides behave as like-charge cations and give rise to repulsive membrane interactions; at short membrane separations, the anionic field induced by the dipolar phosphate groups sets the behavior in the intermembrane region. The attraction of the cationic nitrogens in the dipolar lipid headgroups leads to the adhesion of the membrane surfaces via dipolar bridging. The underlying competition between the opposing field components of the individual dipolar charges leads to the non-uniform salt ion affinity of the zwitterionic membrane with respect to the separation distance; large inter-membrane separations imply anionic excess, while small nanometer-sized separations favor cationic excess. This complex ionic selectivity of zwitterionic membranes may have relevant repercussions on nanofiltration and nanofluidic transport techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call