Abstract

Neuroimaging studies have demonstrated the presence of a default mode network (DMN) which shows greater activity during rest, and an executive network (EN) which is activated during cognitive tasks. DMN and EN are thought to have competing functions. However, recent studies reported that the two networks show coactivation during some cognitive tasks. To clarify how DMN works and how DMN interacts with EN for cognitive control, we recorded EEG activities in the medial prefrontal (anterior DMN: aDMN), posterior cingulate/precuneus (posterior DMN: pDMN), and lateral prefrontal (EN) areas in the monkey. As cognitive tasks, we employed a monkey-monkey competitive video game (GAME) and a delayed-response (DR) task. We focused on theta oscillation because of its importance in cognitive control. We also examined theta band connectivity among the three network areas using the Granger causality analysis.DMN and EN were found to work cooperatively in both tasks. In all the three network areas, we found GAME-task-related, but no DR-task-related, increase in theta power from the resting level, maybe because of the higher cognitive demand associated with the GAME task performance. The information flow conveyed by the theta oscillation was directed more to aDMN than from aDMN for both tasks. The GAME-task-related increase in theta power in aDMN is supposed to be supported by more information flow conveyed by the theta oscillation from EN and pDMN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call