Abstract

Abstract Deep vertical velocity is a critical factor causing deficiencies in Sverdrup theory. However, few studies have focused on its influence in the low-latitude western Pacific. Through multiple analyses of observational, reanalysis, and simulation data, this study explored the contribution of deep nonzero vertical velocity to the Sverdrup transport inaccuracy in the low-latitude North Pacific. The vertical velocities inducing relatively small non-Sverdrup transport exist within 1500–2500 m, which exhibit similar patterns with opposite values to the south and north of 13°N. The zonally integrated meridional volume transport associated with these vertical velocities displays nonnegligible dipolar zonal bands west of approximately 150°W. The positive and negative transport bands, centered at 11° and 17°N, can reach an amplitude of approximately 8.0 Sv (1 Sv ≡ 106 m3 s−1) when integrated from the eastern boundary to 140°E. On average, such integrated meridional transport makes up roughly half of the prominent Sverdrup transport discrepancies in the central-western Pacific. Further investigation indicated that the spatial pattern of these vertical velocities is modulated by ocean topography and deep meridional currents. Moreover, a near-global test suggested that the meridional non-Sverdrup transport related to deep vertical velocity is widespread and undergoes remarkable multidecadal variation. This study reveals the disruptive role of deep vertical velocity in disturbing the Sverdrup balance and emphasizes the consideration of its long-term variation when diagnosing wind-driven circulation changes using Sverdrup theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call