Abstract

The beta(2)-adrenergic receptor (beta(2)-AR) and the large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel have been shown, separately, to be involved in mediating uterine relaxation. Our recent studies reveal that the levels of both beta(2)-AR and BK(Ca) channel proteins in pregnant human myometrium decrease by approximately 50% after the onset of labor. We present direct evidence in support of a structural and functional association between the beta(2)-AR and the BK(Ca) channel in pregnant human myometrium. Localization of both proteins is predominantly plasmalemmal, with 60% of beta(2)-AR colocalizing with the BK(Ca) channel. Coimmunoprecipitation studies indicate that BK(Ca) and beta(2)-AR are structurally linked by direct protein-protein interactions. Functional correlation was confirmed by experiments of human myometrial contractility in which the BK(Ca) channel blocker, paxilline, significantly antagonized the relaxant effect of the beta(2)-AR agonist ritodrine. These novel findings provide an insight into the coupling between the beta(2)-AR and BK(Ca) channel and may have utility in the application of this signaling cascade for therapeutic potential in the management of preterm labor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.