Abstract
This study introduces a biologically-inspired model designed to examine the role of coincidence detection cells in speech segregation tasks. The model consists of three stages: a time-domain cochlear model that generates instantaneous rates of auditory nerve fibers, coincidence detection cells that amplify neural activity synchronously with speech presence, and an optimal spectro-temporal speech presence estimator. A comparative analysis between speech estimation based on the firing rates of auditory nerve fibers and those of coincidence detection cells indicates that the neural representation of coincidence cells significantly reduces noise components, resulting in a more distinguishable representation of speech in noise. The proposed framework demonstrates the potential of brainstem nuclei processing in enhancing auditory skills. Moreover, this approach can be further tested in other sensory systems in general and within the auditory system in particular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biometrics & Biostatistics International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.