Abstract

This study introduces a biologically-inspired model designed to examine the role of coincidence detection cells in speech segregation tasks. The model consists of three stages: a time-domain cochlear model that generates instantaneous rates of auditory nerve fibers, coincidence detection cells that amplify neural activity synchronously with speech presence, and an optimal spectro-temporal speech presence estimator. A comparative analysis between speech estimation based on the firing rates of auditory nerve fibers and those of coincidence detection cells indicates that the neural representation of coincidence cells significantly reduces noise components, resulting in a more distinguishable representation of speech in noise. The proposed framework demonstrates the potential of brainstem nuclei processing in enhancing auditory skills. Moreover, this approach can be further tested in other sensory systems in general and within the auditory system in particular.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call