Abstract

Coherent structures dominate the shear flow in and above the vegetation canopy, affecting the transport of passive scalars. Their detailed understanding is therefore of great interest for a number of environmental studies such as organic gas exchange, pollution dispersion, or forest fire propagation. In the present study, a forest embedded in an atmospheric boundary layer was reproduced in a wind tunnel. An area source was installed to mimic the volatile organic compounds emission coming from the vegetation. A fast gas analyser combined to a triple hot-wire anemometer were used to measure simultaneously and at the same point the momentum and the concentration fluxes above the canopy. This particular set-up enabled the complex scalar exchange mechanism to be studied in the well defined and stationary boundary conditions of a laboratory experiment simulating neutral atmospheric conditions. Measurements showed that the contribution of coherent structures to the momentum and the concentration flux was 80% and 60% respectively. Contributions were found to be nearly constant with height. The combination of velocity and concentration measurements enabled the determination of the mean concentration of the coherent structures. Results highlights the preponderant role of ejections in releasing highly concentrated gas pockets above the forest canopy. These releases were measured to be, in average, 40% more concentrated than the average gas concentration at the same height. It is shown that 70% of the extreme events observed are linked to an ejection process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.