Abstract

The temperature dependence of the static magnetization of polycrystalline rare-earth cobaltite GdCoO3 is measured in the temperature range 2–800 K. The magnetic behaviors of GdCoO3 and Gd3+ are found to be different at temperatures above room temperature, which is caused by the appearance of a contribution from Co3+ ions at high temperatures. The temperature dependence of the magnetic susceptibility of GdCoO3 is determined by the magnetization of rare-earth gadolinium ions and the additional paramagnetic contribution induced by the thermally excited magnetic terms of Co3+ ions. The LDA + GTB method is used to calculate the electronic structure of GdCoO3 in the temperature range 0–300 K with allowance for strong electron correlations. The energy spectrum of GdCoO3 is found to have intragap states that decrease the dielectric gap width with increasing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.