Abstract

The sleep/wake cycle is controlled by reciprocal inhibition between cholinergic and aminergic cell groups in the pons and brainstem [1]. In rapid eye movement (REM) sleep, cholinergic neurone discharge is at its highest level while aminergic discharge is at the lowest level across all behavioural states [1]. These changes are accompanied by alteration of respiratory pattern and in the output of some respiratory motoneurone pools [1]. While effects of aminergic receptors on respiratory pattern and motor output have been extensively investigated, less is known of the effects of cholinergic receptors. Disease syndromes such as obstructive sleep apnoea in adults or infants, or sudden infant death syndrome may involve abnormal cholinergic receptor-mediated responses. Here we report network and cellular effects of muscarinic acetylcholine receptors (mAChRs) on respiratory pattern and motor output in hypoglossal motoneurons (HMs) using in vitro slice preparations from mouse. Rhythmically active brainstem slices were made from mice (P0-4 days) and the mAChR agonist, muscarine was bath applied (10 µM, n = 6). As illustrated in Fig. ​Fig.1A,1A, integrated hypoglossal nerve (IntXIIN) burst amplitude increased by 80 ± 24% (mean ± SE) while burst frequency decreased (-34 ± 7%). Local injection of muscarine (100 µM, n = 14) over the hypoglossal nucleus (nXII) produced an increase in IntXIIN burst amplitude (96 ± 23%) but no change in burst frequency (5 ± 4%). Injections of muscarine (n = 3) in the pre-Botzinger complex (PBC) decreased IntXIIN burst frequency (-20 ± 5%) and increased burst amplitude (60 ± 12%). These effects were blocked by bath application of atropine (n = 3, 1 µM). In whole cell recordings from HMs (n = 14) local nXII or bath application of muscarine evoked an inward current (-29 ± 5 pA) in voltage clamp at -60 mV (see Fig. ​Fig.1A1A for example) and depolarization in current clamp. This current was associated with increased neuronal input resistance (Rn) which was greater at voltages positive to -60 mV (Fig. ​(Fig.1B),1B), suggesting that muscarine inhibited a voltage-dependent outward current. Muscarinic inhibition of K+ currents elicited by slow (2 s) depolarizing voltage ramps in the presence of TTX and Cd2+ was much greater at voltages from -70 to -20 mV (Fig. ​(Fig.1C),1C), a voltage range typically occupied by the voltage- and ligand-dependent K+current IM but not by other voltage-dependent K+ currents. Figure 1 These results suggest that mAChRs have potent effects both on respiratory rhythm generation and HM motor output by distinct actions on both PBC neurones and HMs. We hypothesize that excitatory effects of mAChRs on HMs is partly due to muscarinic inhibition of the potassium current IM, causing depolarization and increased Rn and thus enhancing HM firing.

Highlights

  • To be effective, inspiratory muscles on the left and right sides must contract together

  • We have found that a prominent gap in the column of ventral respiratory group (VRG) The nucleus tractus solitarii (NTS) relays information from primary related parvalbumin cells [2] likely corresponds to the pBc since visceral receptors to the central nervous system and is critically parvalbumin cells are rare in this zone and never co-localize with involved in the reflex control of autonomic functions

  • The specific protein(s) necessary for longterm facilitation (LTF) is unknown, we recently found that episodic hypoxia and LTF are associated with elevations in ventral spinal concentrations of brain derived neurotrophic factor (BDNF)

Read more

Summary

Introduction

Inspiratory muscles on the left and right sides must contract together. The left and right halves of the diaphragm are synchronised because a bilateral population of medullary premotor neurones [1] simultaneously excites left and right phrenic motoneurones. Transection studies demonstrate that each side of the brainstem is capable of generating respiratory rhythm independently [2], so that left and right medullary inspiratory neurones must themselves be synchronised. The interconnections and common excitation that accomplish such synchronisation are unknown in rats. The respiratory rhythm of hypoglossal (XII) nerve discharge in transverse medullary slice preparations from neonatal rats is thought to originate in the region of the ventral respiratory group (VRG); generated there by a combination of “pacemaker” neurones [1] and their interactions with other respiratory neurones. Our goal was to discover interconnections between left and right VRG neurones as well as their connections to XII motoneurones

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call