Abstract

Surface-enhanced Raman scattering under near-IR excitation is investigated for p-aminothiophenol (PATP) molecules that are either adsorbed on an electrochemically roughened silver electrode or embedded in an Au/PATP/Ag molecular junction assembled on an indium-doped tin oxide electrode. The contribution from chemical enhancement can be amplified relative to the contribution from electromagnetic enhancement, because the energy of the near-IR excitation is far from the surface plasmon resonance of the nanosized metal particles. The energy required for the charge-transfer process for the Au/PATP/Ag molecular junction is much lower than that of the PATP molecules adsorbed on the electrochemically roughened silver electrode. Coadsorption of chloride ions on the metal nanoparticles may result in an alteration of the local Fermi level of the metal nanoparticles, thus leading to better energy matching between the energy level of the interconnecting PATP molecules and the Fermi level of the metal nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.