Abstract

Lung inflation to high airway pressure is known to produce tracheal constriction following an initial dilation. This is attributed to stimulation of various pulmonary receptors. In an attempt to find cause of this response, we investigated in 20 decerebrated, tracheostomized and paralyzed dogs changes in the tracheal smooth muscle tension, arterial pressure and the phrenic nerve activity to high-pressure lung inflation. A high-pressure lung inflation evoked a contraction of tracheal smooth muscle following its short-lasting relaxation, and a persistent hypotension. After hilar denervation which eliminated all pulmonary afferents, a high-pressure lung inflation still evoked contraction of tracheal smooth muscle (an increase of 3.7 times) and augmented amplitude and frequency of phrenic bursts. Bilateral transections of sympathetic fibers to the lung, or blockade of arterial perfusion to the carotid sinus and denervation of the carotid sinus bilaterally did not alter the tracheal muscle and phrenic responses to a high-pressure lung inflation. We further found that severe hypotension alone caused similar responses of the tracheal smooth muscle contraction and augmented phrenic activity. Finally, when blood supply to the brainstem was transiently obstructed by clamping both the vertebral and internal carotid arteries bilaterally, the same responses were observed. In contrast, when blood hypoperfusion to the brainstem was prevented by means of extracorporeal circulation, a high-pressure lung inflation failed to evoke such contraction of tracheal smooth muscle and or increased phrenic activity. After transection of the vagus nerves bilaterally at the cervical level the tracheal muscle response to lung inflation was abolished but that of phrenic nerve was preserved. We concluded that the tracheal smooth muscle contraction and phrenic responses induced by high-pressure lung inflation may be in part attributed to brainstem hypoperfusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.