Abstract

We previously showed that muscarinic agonists with M(1) and/or M(4) receptor affinities attenuated cocaine discrimination and self-administration in wild-type mice but not in M(1)/M(4) double-knockout mice. This study aims to elucidate the respective contributions of M(1) and M(4) receptors to this effect. Knockout mice lacking either the M(1) subtype (M (1) (-/-) ) or the M(4) subtype (M (4) (-/-) ) and wild-type mice were trained to discriminate 10mg/kg cocaine from saline. Muscarinic ligands were tested for modulation of cocaine discrimination: xanomeline (M(1)/M(4)-preferring agonist), VU0357017 (M(1)-selective partial agonist), 77-LH-28-1 (M(1) agonist), and BQCA (M(1)-selective positive allosteric modulator). Xanomeline produced rightward shifts in the cocaine dose-effect curve in all three genotypes, but most robustly in wild-type mice. VU0357017 produced rightward shifts in the cocaine dose-effect curve in wild-type and M (4) (-/-) mice, but not in M (1) (-/-) mice. Response rates were suppressed by xanomeline in wild-type and M (1) (-/-) but not in M (4) (-/-) mice and were unaltered by VU0357017. 77-LH-28-1 and BQCA also showed evidence of attenuating cocaine's discriminative stimulus, but at doses that suppressed responding or had other undesirable effects. Intriguingly, both VU0357017 and 77-LH-28-1 exhibited U-shaped dose-effect functions in attenuating cocaine discrimination. None of the drugs substituted for the cocaine stimulus. Attenuation of the cocaine stimulus by VU0357017 depended upon M(1) receptors, and full effects of xanomeline depended upon both M(1) and M(4) receptors. Therefore M(1)-selective agonists and mixed M(1)/M(4) agonists may be promising leads for developing medications that block cocaine's effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call