Abstract
Certain tumors, such as breast, frequently metastasize to bone where they can induce bone destruction. Currently, it is well-accepted that the tumor cells are influenced by other cells and growth factors present in the bone microenvironment that lead to tumor-induced bone disease. Over the past 20years, many groups have studied this process and determined the major contributing factors; however, these results do not fully explain the changes in gene expression and cell behavior that occur when tumor cells metastasize to bone. More recently, groups studying metastasis from soft tissue sites have determined that the rigidity of the microenvironment, which increases during tumor progression in soft tissue, can regulate tumor cell behavior and gene expression. Therefore, we began to investigate the role of the rigid bone extracellular matrix in the regulation of genes that stimulate tumor-induced bone disease. We found that the rigidity of bone specifically regulates parathyroid hormone-related protein (PTHrP) and Gli2 expression in a transforming growth factor β (TGF-β) and mechanotransduction-dependent mechanism. In this review, we summarize the mechanotransduction signaling pathway and how this influences TGF-β signaling and osteolytic gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.