Abstract
Elevated blood flow (reactive hyperemia) is seen in many organs after a period of blood flow stoppage. This hyperemia is often considered to be due in part to a shift to anaerobic metabolism during tissue hypoxia. The aim of our study was to test this hypothesis in skeletal muscle. For this purpose we measured NADH fluorescence at localized tissue areas in cat sartorius muscle during and after arterial occlusions of 5-300 s. In parallel studies, red blood cell (RBC) velocity was measured in venules. Tissue NADH fluorescence rose significantly with occlusions of 45 s or greater, reaching a maximum of 44% above control at 180 s. Peak RBC velocity rose to four times control as occlusion duration was increased from 5 to 45 s, but hyperemia duration was stable at approximately 70 s. With occlusions of 45-240 s, hyperemia duration increased progressively to 210 s while peak flow was unchanged. However, after 300-s occlusions, peak flow rose to six times above control and hyperemia duration fell to 140 s. With occlusions of 45-300 s the time integral both of increased NADH fluorescence and of reduced fluorescence following occlusion release showed a high degree of correlation with the additional hyperemia. We conclude that in this muscle anaerobic vasodilator metabolites are responsible for the increase in reactive hyperemia with arterial occlusions longer than 45 s. Since the durations of reactive hyperemia and reduced fluorescence are substantially different, vasodilator metabolite removal may be due to washout by the bloodstream rather than metabolic uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.