Abstract

Single neurons in an autaptic culture exhibit various types of firing pattern with different firing durations and rhythms. However, a neuron with autapses has often been modeled as an oscillator providing a monotonic firing pattern with a constant periodicity because of the lack of a mathematical model. In the work described in this study, we use computational simulation and whole-cell patch-clamp recording to elucidate and model the mechanism by which such neurons generate various firing pattens. In the computational simulation, three types of spontaneous firing pattern, i.e., short, long-lasting, and periodic burst firing patterns are realized by changing the combination ratio of N-methyl-d-aspartate (NMDA) to α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) conductance. These three types of firing patterns are also observed in the experiments where neurons are cultured in isolation on micropatterned substrates. Using the AMPA and NMDA current models, we discuss that, in principle, autapses can regulate rhythmicity and information selection in neuronal networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call