Abstract

Factor Va, the cofactor of prothrombinase, is composed of heavy and light chains associated noncovalently in the presence of divalent metal ions. The COOH-terminal region of the heavy chain contains acidic amino acid clusters that are important for cofactor activity. In this work, we have investigated the role of amino acid region 659−663, which contains five consecutive acidic amino acid residues, by site-directed mutagenesis. We have generated factor V molecules in which all residues were mutated to either lysine (factor V5K) or alanine (factor V5A). We have also constructed a mutant molecule with this region deleted (factor VΔ659−663). The recombinant molecules along with wild-type factor V (factor VWT) were transiently expressed in mammalian cells, purified, and assessed for cofactor activity. Two-stage clotting assays revealed that the mutant molecules had reduced clotting activities compared to that of factor VaWT. Kinetic analyses of prothrombinase assembled with the mutant molecules demonstrated diminished kcat values, while the affinity of all mutant molecules for factor Xa was similar to that for factor VaWT. Gel electrophoresis analyses of plasma-derived and recombinant mutant prothrombin activation demonstrated delayed cleavage of prothrombin at both Arg320 and Arg271 by prothrombinase assembled with the mutant molecules, resulting in meizothrombin lingering throughout the activation process. These results were confirmed after analysis of the cleavage of FPR-meizothrombin. Our findings provide new insights into the structural contribution of the acidic COOH-terminal region of factor Va heavy chain to factor Xa activity within prothrombinase and demonstrate that amino acid region 659−663 from the heavy chain of the cofactor contributes to the regulation of the rate of cleavage of prothrombin by prothrombinase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.