Abstract

The agriculture sector in Asia and the Pacific region contributes massively to climate change, as the region has the largest share of greenhouse gas (GHG) emissions from agriculture. The region is the largest producer of rice, a major source of methane emissions. Further, to achieve food security for the increasing population, there has been a massive increase in the use of synthetic fertilizer and energy in agricultural production in the region over the last few decades. This has led to an enormous rise in nitrous oxide (N2O; mostly from fertilizer-N use) and carbon dioxide (mostly from energy use for irrigation) emissions from agriculture. Besides this, a substantial increase in livestock production for meat and dairy products has increased methane emissions, along with other environmental problems. In this context, this study conducts a systematic review of strategies that can reduce emissions from the agriculture sector using a multidimensional approach, looking at supply-side, demand-side, and cross-cutting measures. The review found that though there are huge potentials to reduce GHG emissions from agriculture, significant challenges exist in monitoring and verification of GHG emissions from supply-side measures, shifting to sustainable consumption behavior with regard to food consumption and use, and the design and implementation of regulatory and incentive mechanisms. On the supply side, policies should focus on the upscaling of climate-smart agriculture primarily through expanding knowledge and improving input use efficiency in agriculture, while on the demand side, there is a need to launch a drive to reduce food loss and waste and also to move towards sustainable consumption. Therefore, appropriate integration of policies at multiple levels, as well as application of multiple measures simultaneously, can increase mitigation potential as desired by the Paris Agreement and also help to achieve several of the United Nations’ SDGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.