Abstract

Previous studies suggested an important role for 20-HETE in the regulation of myogenic responses. Thus, pressure-diameter relationships were investigated in isolated, cannulated coronary arteries (approximately 100 microm) from male endothelial NO synthase knockout (eNOS-KO) and wild-type (WT) mice. All arteries constricted in response to step increases in perfusate pressure from 20 to 100 mm Hg. This constriction was significantly enhanced from 40 to 100 mm Hg in arteries of eNOS-KO compared with those of WT mice. For example, at 60 and 100 mm Hg, respectively, the normalized diameter (expressed as a percentage of the corresponding passive diameter) of arteries of eNOS-KO mice was 10% and 12% smaller than that of WT mice. Removal of the endothelium did not significantly affect the responses of vessels from either strain of mice. However, N-methylsulfonyl-12,12-dibromododec-11-enamide (5x10(-6) M), an inhibitor of cytochrome P-450 (CYP)/omega-hydroxylase, significantly attenuated the greater myogenic constriction of arteries from eNOS-KO mice by approximately 12% at each pressure step but did not significantly affect responses of those from WT mice, leading to a comparable myogenic response in the 2 strains. Western blot analysis demonstrated a comparable CYP4A protein content in coronary arteries of the 2 strains of mice. However, production of 20-HETE, measured by fluorescent high-performance liquid chromatography assay was approximately 2.7-fold greater in eNOS-KO compared to WT mice. Thus, as a function of eNOS deficiency, the enhanced coronary artery constriction to pressure is attributable to an increased activity of omega-hydroxylase, which, consequently, increases the synthesis of 20-HETE in vascular smooth muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.