Abstract

A variety of mechanisms have been considered in the pathogenesis of the cell damage occurring in the kidney that is undergoing transient ischemia. However, little information is available about the role of oxidative stress in building up the tissue injury in the hypoxic organ during short-term ischemia. After a standard brief period (25 min) of unilateral kidney ischemia in rats, pretreated or not with acivicin (60 micromol/L/kg i.v.), tissue samples from both ischemic and not ischemic kidneys were obtained to measure malondialdehyde (MDA) and glutathione (GSH) content, gamma glutamyl transpeptidase (GGT) activity by spectrophotometry, localization and intensity of enzyme activity, and tissue damage by histochemistry. GGT activity was found to be increased in both cortical and medullar zones of the ischemic kidneys, where the GSH level was only slightly decreased and the MDA level, in contrast, was markedly increased; in parallel, the cytosolic volume of the proximal tubular (PT) cells showed a significant increment. The animal pretreatment with acivicin, a specific inhibitor of GGT, besides preventing the up-regulation of the enzyme during ischemia, afforded good protection against the observed changes of MDA and GSH tissue levels, as well as of tubular cell volume. Ex vivo data supporting a net pro-oxidant effect of up-regulated GGT during short-term ischemia of rat kidney have been obtained. The enzyme stimulation appears to contribute to the renal morphological damage exerted by a brief hypoxic condition at the level of PT cells. The actual impact on kidney function by GGT-dependent oxidative damage during transient ischemia and the potential protective action of GGT inhibitors require subsequent investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.