Abstract

The contribution and mechanism of κ-/ι-carrageenan (CG) with different hydration characteristics on the gelling properties of shrimp myofibrillar protein (MP) gelation was studied. The gel strength, water-holding capacity and viscoelastic properties of MP gels were significantly enhanced by 1.0% κ-/ι-CG (P < 0.05), but the microstructure showed that excessive carrageenan caused fragmentation of the gel network and a corresponding decrease in gel properties. Compared to MP-ιCG, MP-κCG showed larger breaking force and shorter breaking distance, thus enhancing the hardness and brittleness of the gel, which might be ascribed to a reinforced network skeleton and a tighter binding of κCG-myosin. However, MP-ιCG stabilized more moisture in the gel network, thereby improving the tenderness of the gel, which might be related to the electrostatic repulsion observed between the sulfate groups of ιCG and the myosin observed by molecular docking. In addition, the β-sheet content and intermolecular interactions might be positively correlated with gel properties. In this study, a composite gel system was constructed based on the interaction of MP and CG. The quality differences of two kinds of CG-MP gels were clarified, which will provide guidance for the application of different kinds of carrageenan and the development of recombinant meat products with specific quality. © 2022 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.