Abstract

Although the alteration of purinoreceptor pattern on skeletal muscle is known to accompany physiological muscle differentiation and the pathogenesis of muscle dystrophy, the exact identity of and the relative contribution from the individual receptor subtypes to the purinergic signal have been controversial. To identify these subtypes in cultured myotubes of 5-10 nuclei, changes in intracellular calcium concentration and surface membrane ionic currents were detected and calcium fluxes calculated after the application of the subtype-specific agonists 2'3'-O-(benzoyl-4-benzoyl)-ATP (BzATP), 2-methyltio-ADP and UTP. The effectiveness of these agonists together with positive immunocytochemical staining revealed the presence of P2X(4), P2X(5), P2X(7), P2Y(1) and P2Y(4) receptors. siRNA-reduced protein expression of P2X(5), P2X(7) and P2Y(1) receptors was accompanied by reduction in the ATP-evoked calcium transients. Furthermore, anti-P2X(7) siRNA caused a significant drop in the early peak and delayed steady component of the calculated calcium flux. The use of its antagonist, oxidized ATP, similarly to transfection with anti-P2X(7) siRNA caused significant reduction in the agonist-elicited ionic currents I (ATP) and I (BzATP), with a greater drop in the latter. Our results demonstrate that the activation of ionotropic P2X(4), P2X(5) and P2X(7) and metabotropic P2Y(1) and P2Y(4) purinoreceptors participates in forming the calcium transients of multinucleated myotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.