Abstract

Bridges play a crucial role in the development of the national economy and transportation industry, and their deformation monitoring is vital for ensuring their health. Therefore, it is necessary to conduct long-term monitoring of bridges’ deformation. This study monitored the deformation of the Wuhan Yangtze River Bridge using the SBAS-InSAR technology and Sentinel-1A data. The deformation results were analyzed in combination with bridge structure, human activity, temperature and stratigraphy. The results were as follows: (1) The vertical deformation rate of the bridge was between −15.6 and 10.7 mm/year, and part of the deformation belonged to rebound deformation; (2) The middle span deformation is the largest and the uplift and lowering alternate; (3) The reduction in human activity is the reason for the lower deformation amplitude from January to October 2020 compared to after October 2020; (4) A positive correlation between deformation and temperature was observed only along a portion of the bridge; (5) There is no direct correlation between observed lowering and stratigraphy under the bridge piers, as the sinking is presumably absorbed by the bridge structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call