Abstract

Objective. Retinal biomarker in optical coherence tomography (OCT) images plays a key guiding role in the follow-up diagnosis and clinical treatment of eye diseases. Although there have been many deep learning methods to automatically process retinal biomarker, the detection of retinal biomarkers is still a great challenge due to the similar characteristics to normal tissue, large changes in size and shape and fuzzy boundary of different types of biomarkers. To overcome these challenges, a novel contrastive uncertainty network (CUNet) is proposed for retinal biomarkers detection in OCT images. Approach. In CUNet, proposal contrastive learning is designed to enhance the feature representation of retinal biomarkers, aiming at boosting the discrimination ability of network between different types of retinal biomarkers. Furthermore, we proposed bounding box uncertainty and combined it with the traditional bounding box regression, thereby improving the sensitivity of the network to the fuzzy boundaries of retinal biomarkers, and to obtain a better localization result. Main results. Comprehensive experiments are conducted to evaluate the performance of the proposed CUNet. The experimental results on two datasets show that our proposed method achieves good detection performance compared with other detection methods. Significance. We propose a method for retinal biomarker detection trained by bounding box labels. The proposal contrastive learning and bounding box uncertainty are used to improve the detection of retinal biomarkers. The method is designed to help reduce the amount of work doctors have to do to detect retinal diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call