Abstract
This paper is concerned with self-representation subspace learning. It is one of the most representative subspace techniques, which has attracted considerable attention for clustering due to its good performance. Among these methods, low-rank representation (LRR) has achieved impressive results for subspace clustering. However, it only considers the similarity between the data itself, while neglecting the differences with other samples. Besides, it cannot well deal with noise and portray cluster-to-cluster relationships well. To solve these problems, we propose a Contrastive Self-representation model for Clustering (CSC). CSC simultaneously takes into account the similarity/dissimilarity between positive/negative pairs when learning the self-representation coefficient matrix of data while the form of the loss function can reduce the effect of noise on the results. Moreover, We use the ℓ1,2-norm regularizer on the coefficient matrix to achieve its sparsity to better characterize the cluster structure. Thus, the learned self-representation coefficient matrix well encodes both the discriminative information and cluster structure. Extensive experiments on seven benchmark databases indicate the superiority of our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.