Abstract

Segmentation of ovary and follicles from 3D ultrasound (US) is the crucial technique of measurement tools for female infertility diagnosis. Since manual segmentation is time-consuming and operator-dependent, an accurate and fast segmentation method is highly demanded. However, it is challenging for current deep-learning based methods to segment ovary and follicles precisely due to ambiguous boundaries and insufficient annotations. In this paper, we propose a contrastive rendering (C-Rend) framework to segment ovary and follicles with detail-refined boundaries. Furthermore, we incorporate the proposed C-Rend with a semi-supervised learning (SSL) framework, leveraging unlabeled data for better performance. Highlights of this paper include: (1) A rendering task is performed to estimate boundary accurately via enriched feature representation learning. (2) Point-wise contrastive learning is proposed to enhance the similarity of intra-class points and contrastively decrease the similarity of inter-class points. (3) The C-Rend plays a complementary role for the SSL framework in uncertainty-aware learning, which could provide reliable supervision information and achieve superior segmentation performance. Through extensive validation on large in-house datasets with partial annotations, our method outperforms state-of-the-art methods in various evaluation metrics for both the ovary and follicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.