Abstract

Visual and audio signals often coexist in natural environments, forming audio-visual events (AVEs). Given a video, we aim to localize video segments containing an AVE and identify its category. It is pivotal to learn the discriminative features for each video segment. Unlike existing work focusing on audio-visual feature fusion, in this paper, we propose a new contrastive positive sample propagation (CPSP) method for better deep feature representation learning. The contribution of CPSP is to introduce the available full or weak label as a prior that constructs the exact positive-negative samples for contrastive learning. Specifically, the CPSP involves comprehensive contrastive constraints: pair-level positive sample propagation (PSP), segment-level and video-level positive sample activation (PSA S and PSA V). Three new contrastive objectives are proposed (i.e., [Formula: see text], [Formula: see text], and [Formula: see text]) and introduced into both the fully and weakly supervised AVE localization. To draw a complete picture of the contrastive learning in AVE localization, we also study the self-supervised positive sample propagation (SSPSP). As a result, CPSP is more helpful to obtain the refined audio-visual features that are distinguishable from the negatives, thus benefiting the classifier prediction. Extensive experiments on the AVE and the newly collected VGGSound-AVEL100k datasets verify the effectiveness and generalization ability of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.