Abstract
We explore the potential of the contrastive variational autoencoder to detect latent disorder-specific patterns in the network, analyzing functional brain networks in autistic individuals as the case. Autism spectrum disorder has long troubled medical practitioners, neurologists, and researchers. It is due to its extremely variable nature, both neurologically and behaviorally. Though machine learning has been in use to automate autism diagnosis, little has been done to delve into its intricacies. Here, we attempt to understand the neural mechanisms of autism spectrum disorder using contrastive variational autoencoder in conjunction with feature engineering. Our proposed methodology results in a physiologically interpretable classifier with a remarkable F1-score (up to 95%) and reveals a weak frontal lobe functional connectivity in the alpha band for children with autism spectrum disorder. Our study suggests an increased focus on efficient frontal lobe EEG sampling. Additionally, it highlights the importance of the proposed pipeline for understanding the underlying neural abnormalities in autism over the traditional machine learning pipeline. Thus, the obtained results have proven a contrastive variational autoencoder to be a promising approach for discovering latent patterns and features in complex networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.