Abstract

We propose a novel probabilistic method employing Bayesian Model Averaging and self-cycle regularization for spatio-temporal correspondence learning in videos within a self-supervised learning framework. Most existing methods for self-supervised correspondence learning suffer from noisy labels that come with the data for free, and the presence of occlusion exacerbates the problem. We tackle this issue within a probabilistic framework that handles model uncertainty inherent in the path selection problem built on a complete graph. We propose a self-cycle regularization to consider a cycle-consistency property on individual edges in order to prevent converging on noisy matching or trivial solutions. We also utilize a mixture of sequential Bayesian filters to estimate posterior distribution for targets. In addition, we present a domain contrastive loss to learn discriminative representation among videos. Our algorithm is evaluated on various datasets for video label propagation tasks including DAVIS2017, VIP and JHMDB, and shows outstanding performances compared to the state-of-the-art self-supervised learning based video correspondence algorithms. Moreover, our method converges significantly faster than previous methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.