Abstract

Modular and distributed coding theories of category selectivity along the human ventral visual stream have long existed in tension. Here, we present a reconciling framework-contrastive coding-based on a series of analyses relating category selectivity within biological and artificial neural networks. We discover that, in models trained with contrastive self-supervised objectives over a rich natural image diet, category-selective tuning naturally emerges for faces, bodies, scenes, and words. Further, lesions of these model units lead to selective, dissociable recognition deficits, highlighting their distinct functional roles in information processing. Finally, these pre-identified units can predict neural responses in all corresponding face-, scene-, body-, and word-selective regions of human visual cortex, under a highly constrained sparse positive encoding procedure. The success of this single model indicates that brain-like functional specialization can emerge without category-specific learning pressures, as the system learns to untangle rich image content. Contrastive coding, therefore, provides a unifying account of object category emergence and representation in the human brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.