Abstract
Since most facial emotion recognition (FER) methods significantly rely on supervision information, they have a limit to analyzing emotions independently of persons. On the other hand, adversarial learning is a well-known approach for generalized representation learning because it never requires supervision information. This paper presents a new adversarial learning for FER. In detail, the proposed learning enables the FER network to better understand complex emotional elements inherent in strong emotions by adversarially learning weak emotion samples based on strong emotion samples. As a result, the proposed method can recognize the emotions independently of persons because it understands facial expressions more accurately. In addition, we propose a contrastive loss function for efficient adversarial learning. Finally, the proposed adversarial learning scheme was theoretically verified, and it was experimentally proven to show state of the art (SOTA) performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.