Abstract
The Large Eddy Simulation (LES) technique is used to explore similarities and differences between turbulence–radiation interaction (TRI) in fully developed supersonic plane channel flow and axisymmetric non-swirling pipe flow, bounded by isothermal black and diffusive walls which are kept at a temperature of 800K. The comparison between both flows is based on equal friction Mach number, friction Reynolds number, Prandtl number and ratio of specific heats. The Reynolds number is defined with the channel half-width and pipe radius. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem of the low-pass filtered compressible Navier–Stokes equations. The working fluid is water vapour and its radiative properties are accounted for using a grey gas model with a Planck mean absorption coefficient varying with temperature. Simulations have been performed for two different optical thicknesses. Results for mean flow quantities, Reynolds stresses and pressure–strain correlations are presented, contrasting radiative effects in both flows and indicating their interaction with curvature effects in the pipe. An analysis of the total enthalpy balance reveals the role of radiative heat transfer, compared to turbulent and mean molecular heat transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.