Abstract

<p><strong>The Atlantic meridional overturning circulation (AMOC) is pivotal for regional and global climate due to its key role in the uptake and redistribution of heat, carbon and other tracers. Establishing the causes of historical variability in the AMOC can tell us how the circulation responds to natural and anthropogenic changes at the ocean surface. However, attributing observed AMOC variability and inferring causal relationships is challenging because the circulation is influenced by multiple factors which co-vary and whose overlapping impacts can persist for years.  Here we reconstruct and unambiguously attribute variability in the AMOC at the latitudes of two observational arrays to the recent history of surface wind stress, temperature and salinity. We use a state-of-the-art technique that computes space- and time-varying sensitivity patterns of the AMOC strength with respect to multiple surface properties from a numerical ocean circulation model constrained by observations. While on inter-annual timescales, AMOC variability at 26°N is overwhelmingly dominated by a linear response to local wind stress, in contrast, AMOC variability at subpolar latitudes is generated by both wind stress and surface temperature and salinity anomalies. Our analysis allows us to obtain the first-ever reconstruction of subpolar AMOC from forcing anomalies at the ocean surface.</strong></p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call