Abstract

AbstractChanged spatial configurations at sowing have been investigated as a strategy to minimize interspecific competition and improve the establishment and persistence of multi-species plantings in pastures, but the impact of this practice on the soil microbiome has received almost no previous research attention. Differences in populations of bacteria and fungi in the surface 10 cm of soil in the third year following pasture establishment were quantified using quantitative polymerase chain reaction and terminal restriction fragment length polymorphism methods. Populations were compared on, and between, drill rows sown to either the perennial grass phalaris (Phalaris aquatica L.), perennial legume lucerne (alfalfa; Medicago sativa L.) or the annual legume subterranean clover (Trifolium subterraneum L.). Results showed that soil microbial abundance and diversity were related to plant distribution across the field at the time of sampling and to soil chemical parameters including total carbon (C), mineral nitrogen (N), pH, and available phosphorus (P), potassium (K) and sulfur (S). Despite the 27-month lag since sowing, pasture species remained concentrated around the original drill row with very little colonization of the inter-row area. The abundance and diversity of bacterial and fungal populations were consistently greater under drill rows associated with higher total C concentrations in the surface soil compared with the inter-row areas. Our results showed that the pH and available nutrients were similar between the subterranean clover drill row and the inter-row, suggesting that soil microbial populations were not impacted directly by these soil fertility parameters, but rather were related to the presence or absence of plants. The abundance of bacteria and fungi were numerically lower under phalaris rows compared to rows sown to legumes. The richness and diversity of fungal populations were lowest between rows where lucerne was planted. Possible explanations for this observation include a lower C:N ratio of lucerne roots and/or a lack of fibrous roots at the soil surface compared to the other species, illustrating the influence of contrasting plant types on the soil microflora community. This study highlights the enduring legacy of the drill row on the spatial distribution of plants well into the pasture phase of a cropping rotation and discusses the opportunity to enhance the microbiome of cropping soils on a large scale during the pasture phase by increasing plant distribution across the landscape.

Highlights

  • Soil health and function are of key interest to farmers and their advisors who are seeking to improve the utilization of soil resources and to increase the resilience of production systems in the face of extreme and variable climatic events

  • That is, where subterranean clover was restricted to only half the drill rows, the number of seeds of that species placed in the designated drill rows was doubled compared to where subterranean clover was sown in every drill row in order to keep the weight of subterranean clover seed sown constant across treatments

  • The basal frequency (%) for subterranean clover in the SC-only treatment was calculated as the average of both drill rows sampled and was higher in the inter-row area compared with both perennial species (Table 1)

Read more

Summary

Introduction

Soil health and function are of key interest to farmers and their advisors who are seeking to improve the utilization of soil resources and to increase the resilience of production systems in the face of extreme and variable climatic events. Some of the recognized beneficial influences of microorganisms on plant growth and nutrition include the rhizobium-legume symbiosis for biological nitrogen fixation, mycorrhizal associations for phosphorus (P) uptake, disease suppression and improved soil structure (Gupta et al, 2019b). Beyond these examples the dynamic relationships between plant and microbial communities in agricultural landscapes remains relatively poorly understood. Changes in the balance between C turnover and retention through variation in microbial communities due to plant rhizosphere effects may be crucial because of its effects on soil fertility, structure and sustainable crop production

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call