Abstract
Shale oil enrichment and accumulation in lacustrine strata is rather heterogeneous (unlike that in marine strata), which is a challenging issue to study. Here we carried out a case study in the Permian Lucaogou Formation in the Jimusar Sag, Junggar Basin, northwestern China. Based on data from drill cores, thin sections, rock extracts, and crude oils (including well logging, petrophysics, nuclear magnetic resonance, organic geochemistry, and oil test), the differences of lithology, reservoir physical property, oil generation potential, shale oil content, and physical property and geochemistry of oil between the lower and upper sweet spots were comprehensively compared. Results show that a mixed sedimentary system comprising interbedded carbonate, siltstone, and mudstone was developed owing to terrigenous clastic sedimentation, volcanism, and carbonate deposition. The lower sweet spot has a relatively higher content of silt compared with the upper sweet spot. Due to spatial changes in the depositional environment, only the lower sweet spot occurs at the northeastern margin of the study area and only the upper sweet spot occurs at its southeastern margin, but both occur in the central part of the study area. The porosity and permeability of the sweet spots are highly heterogeneous, due to the complex sedimentary–diagenetic processes, and dissolution pores are common in the lower sweet spot. The hydrocarbon generation potential and shale oil content of the sweet spots are both excellent. Comparatively, the shale oil in the lower sweet spot has higher densities and lower wax contents than those in the upper sweet spot. Thus, the shale oil is more mobile in the upper sweet spot. This implies a high-salinity depositional environment for the lower sweet spot and the oils are generated from salt-tolerant planktonic algae. The oil saturation index (OSI) values are not entirely consistent with the test production results. This indicates that the shale oil productivity is comprehensively controlled by multiple factors, e.g., the hydrocarbon generation potential, reservoir physical properties, and shale oil mobility. These are key features that distinguish lacustrine from marine shale oil systems. The exploration and exploitation strategies of shale oil in lacustrine systems need to be carefully developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.