Abstract

Sedimentation patterns of tidal flats along the Korean west coast have long been known to be largely controlled by the monsoon climate. On the other hand, much less is known about the effect of the monsoon on sedimentation in coastal embayments with mouths of different geographic orientations. Good examples are Hampyeong and Yeoja bays along the west and south coasts, respectively. Both have narrow entrances, but their mouths open toward the northwest and the south, respectively. With mean tidal ranges of 3.46 and 3.2 m, respectively, the two bays experience similar tidal regimes and are hence excellent candidates to compare the effect of different exposure to the same regional monsoon climate on their respective sediment distribution patterns. The winter monsoon, in particular, is characterized by strong northwesterly winds that directly impact the west coast, but blow offshore along the south coast. For the purpose of this study, surficial sediment samples were collected from intertidal and subtidal flats of the two bays, both in summer and winter. Grain-size analyses were carried out by sieving (sand fraction) and Sedigraph (mud fraction). In the case of Yeoja Bay, the sediments consist mostly of mud (mean grain sizes of 5.4 to 8.8 phi). Seasonal changes are very subtle, the sediments being slightly coarser in summer when silt-dominated sediments are supplied by two streams to the northern parts of the bay in response to heavy rainfall. With the exception of the deeper tidal channels, Yeoja Bay is characterized by a thick mud blanket the year round, which is modulated by processes associated with the summer monsoon that predominantly blows from the east. Textural parameters suggest severely restricted sediment mixing on the subtidal and intertidal flats, the overall low energy situation preventing sands from reaching the tidal flats. The sediments of Hampyeong Bay, by contrast, are characterized by a distinct shoreward fining trend. Mean grain sizes average around –2.2 phi at the mouth and 8.2 phi near the shore of the inner bay. The textural relationships suggest progressive mixing between two hydraulic populations, the overall higher energy situation allowing sands to be transported onto the tidal flats in winter. In addition, a clear seasonal signal indicating deposition in summer and erosion in winter is observed, the latter probably being controlled by waves generated by strong northwesterly winds of the winter monsoon. The contrasting energy regimes controlling sediment distribution in the two bays are particularly well reflected in ternary diagrams of sand/silt/clay ratios and bivariate plots of textural parameters. The results clearly demonstrate that tidal sedimentation along the west coast of Korea is controlled by the more energetic winter monsoon, whereas along the south coast it is modulated by the less energetic summer monsoon. As a consequence, distinct seasonal changes are particularly pronounced along the west coast, whereas these are more subtle along the south coast. The orientation of bay mouths relative to the direction of wind associated with the summer and winter monsoon is thus identified as the main reason for the completely different sedimentation patterns observed on the subtidal and intertidal flats of the two bays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call