Abstract

BackgroundMany coastal areas of the world will be impacted by seawater intrusion inland exposing crops to increasing levels of soil salinity. Studies of salinity stress in horticultural crops, including papaya, invariably use NaCl as the salt source, which may not be indicative of seawater.MethodsThis study compared plant growth, physiological, and nutritional responses, including leaf gas exchange, maximal potential quantum efficiency of photosystem II (the ratio of variable to maximum chlorophyll fluorescence; Fv/Fm), the leaf chlorophyll index (LCI), electrolyte leakage (EL), leaf relative water content (RWC), leaf water potential (Ψw), leaf osmotic potential (Ψo), leaf and root N, P, K, Ca, Mg, Na and Cl contents, and growth of potted ‘Red Lady’ papaya plants, in a calcined clay substrate, irrigated with NaCl or artificial seawater (Instant Ocean®) at six soil electrical conductivity (EC) levels (0, 1, 2, 3, 4 or 6 dS m−1).ResultsThere were slight significant reductions in Ψw, Ψo, net CO2 assimilation (A), stomatal conductance (gs), and transpiration (Tr) with increasing EC regardless of the salt source. Leaf Ca, Mg, Na and Cl contents and root Mg, Na, and Cl increased significantly with increasing EC levels. For both salt sources, there was an indication of osmotic adjustment and tolerance of papaya up to an EC level of 6 dS m−1. A significant difference between the response to NaCl and artificial seawater was observed for plant height, leaf Mg and Cl contents, and root Mg and Na contents.ConclusionThe use artificial seawater may be a better source than NaCl for studying papaya responses to increasing soil salinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.