Abstract
The majority of the world’s plants rely on animal pollinators for reproduction, making pollination a key ecosystem service for the maintenance of natural and cultivated plant communities. Mutual interactions between plants and pollinators, also called “plant-pollinator networks”, are becoming increasingly vulnerable due to the intensification of anthropogenic land use and climate change. Thus, due to the rapid decline of semi-natural grasslands in the Northern Apennines (Italy), we aimed at understanding how the fragmentation of these habitats, the spatial distribution, and the amount of semi- and natural areas surrounding them, could affect species diversity and plant-pollinator networks. Specifically, in the Northern Apennines, we monitored semi-natural grasslands belonging to the EU habitat type 6510 to evaluate the effect of fragmentation on plant and pollinator richness and on the plant-pollinator network. We carried out generalized linear models considering three taxonomical and six network descriptors as response variables and the combinations of grasslands size and isolation, as well as 10 other factors describing landscape composition as explanatory variables. We found a well-structured plant-pollinator network, characterized by a high diversity of both plants and pollinators, with mutual relations marginally specialized, highly affected by habitat fragmentation and the land use of surrounding grasslands. Moreover, large and neighboring patches increased pollinator richness and improved the overall network structure while the occurrence of meadows and shrubs around fragmented patches was important to ensure the continuity of floristic resources. Finally, extensive croplands and agricultural settlements significantly reduced plant and pollinator diversity, favoring generalist (probably invasive) species, which however increased the strength and stability of the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.