Abstract

The goal of this study was to assess the motor output capabilities of the forelimb representation of the supplementary motor area (SMA) in terms of the sign, latency and strength of effects on electromyographic (EMG) activity. Stimulus triggered averages of EMG activity from 24 muscles of the forelimb were computed in SMA during a reach-to-grasp task. Poststimulus facilitation (PStF) from SMA had two distinct peaks (15.2 and 55.2 ms) and one poststimulus suppression (PStS) peak (32.4 ms). The short onset latency PStF and PStS of SMA were 5.5 and 16.8 ms longer than those of the primary motor cortex (M1). The average magnitudes (peak increase or decrease above baseline) of the short and long latency PStF and PStS from SMA at 60 microA were 13.8, 11.3 and -11.9% respectively. In comparison, M1 PStF and PStS magnitudes at 15 microA were 50.2 and -23.8%. Extrapolating M1 PStF magnitude to 60 microA yields a mean effect that is nearly 15 times greater than the mean PStF from SMA. Moreover, unlike M1, the facilitation of distal muscles from SMA was not significantly greater than the facilitation of proximal muscles. We conclude that the output from SMA to motoneurons is markedly weaker compared with M1 raising doubts about the role of SMA corticospinal neurons in the direct control of muscle activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.