Abstract

Detailed multispecies studies on the patterns of genetic variability and differentiation in marine environments are still rare. Using mitochondrial and nuclear genetic markers, we compared genetic variability and population structuring of threespine (Gasterosteus aculeatus) and ninespine (Pungitius pungitius) sticklebacks from the same eleven marine and six freshwater locations within the Baltic Sea basin. Analyses of both marker types revealed a significantly lower degree of genetic structuring in both marine and freshwater populations of threespine than those ninespine sticklebacks. Isolation-by-distance (IBD) was detected across the marine populations in both species, suggesting spatially limited gene flow. However, the levels of genetic diversity and differentiation across the localities were uncorrelated between the two species in both marine and freshwater environments. Accordingly, estimates of effective population sizes were larger and migration rates were higher for three- than for ninespine sticklebacks. Hence, ninespine stickleback populations from the Baltic Sea basin appear to be subject to stronger genetic drift than sympatric threespine sticklebacks, and the proximate reason for this difference is likely to be found from autecological differences between the two species. In accordance with the earlier studies, genetic variability was higher and the degree of genetic differentiation was lower in marine than in freshwater populations in both species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.