Abstract
Two closely related, rigidly linked porphyrin−naphthoquinone dyads have been prepared and studied using time-resolved fluorescence and absorption methods. Dyad 1, whose quinone carbonyl groups are relatively close to the porphyrin macrocycle, exhibits photoinduced electron-transfer rate constants that are virtually independent of solvent dielectric constant and temperature within the range 77−295 K. Dyad 2, which has a similar donor−acceptor linkage but whose quinone carbonyl groups are ∼2 A farther from the porphyrin, features photoinduced electron-transfer rate constants that decrease with decreasing solvent dielectric constant. Electron transfer in this molecule ceases at low temperatures. Photoinduced electron transfer in dyad 2 exhibits the usual dependence on free energy change and solvent reorganization observed in many similar porphyrin−quinone systems. The behavior of 1 may be attributed at least in part to the smaller separation of the porphyrin radical cation and the quinone radical anion, whic...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.