Abstract

To understand the microbial composition and diversity patterns, cryoconite granules were collected from two geographical areas, i.e., Nepali Himalaya and Greenland, Arctic. 16S rRNA, ITS and the D1/D2 domain sequencing techniques were used for characterization of microbial communities of the four glaciers. The total 13 species of bacteria such as Bacillus aryabhattai, Bacillus simplex, Brevundimonas vesicularis, Cryobacterium luteum, Cryobacterium psychrotolerans, Dermacoccus nishinomiyaensis, Glaciihabitans tibetensis, Leifsonia kafniensis, Paracoccus limosus, Polaromonas glacialis, Sporosarcina globispora, Staphylococcus saprophyticus, Variovorax ginsengisoli, and 4 species of fungi such as Goffeauzyma gilvescens, Mrakia robertii, Dothideomycetes sp., Helotiales sp. were recorded from Nepali Himalaya. Among these, 12 species of bacteria and 4 species of fungi are new contributions to Himalaya. In contrast to this, six species of bacteria such as Bacillus cereus, Cryobacterium psychrotolerans, Dermacoccus nishinomiyaensis, Enhydrobacter aerosaccus, Glaciihabitans tibetensis, Subtercola frigoramans, and nine species of fungi such as Goffeauzyma gilvescens, Mrakia robertii, Naganishia vaughanmartiniae, Piskurozyma fildesensis, Rhodotorula svalbardensis, Alatospora acuminata, Articulospora sp., Phialophora sp., Thelebolus microspores, and Dothideomycetes sp.), were recorded from Qaanaaq, Isunnguata Sermia and Thule glaciers, Greenland. Among these, five species of bacteria and seven species of fungi are new contributions to Greenland cryoconite. Microbial analyses indicate that the Nepali Himalayan cryoconite colonize higher numbers of microbial species compared to the Greenland cryoconite.

Highlights

  • Cryoconite are dark-colored, bio-inorganic dusts, transported by wind and deposited on the glaciers and Sea ice [1]

  • Cryoconite samples used in this study were collected from three Greenland glaciers: Qaanaaq (QG), Thule (TG), Isunnguata Sermia (IS), and one Nepali Himalaya glacier, Yala (YG) (Figure 1a–d)

  • Amplicon sequence-based approach in diversity analyses documented a larger assortment of microbes [16,19,43,44,45,46,47,48,50,51,56], and reported bacterial species affiliated to four classes such as Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, and a few fungi (Microbotryomycetes and Chytridiomycota)

Read more

Summary

Introduction

Cryoconite are dark-colored, bio-inorganic dusts, transported by wind and deposited on the glaciers and Sea ice [1]. The dark color of cryoconite is due to combinations of minerals, organic matters and microorganisms, which reduces the albedo of glaciers and accelerates ice melting [12,13,14,15,16]. Cryoconite can cover about 0.1–10% of the ice surface in the ablation zone of glaciers [6] and is distributed in many parts of the world including Arctic, Antarctic, and Himalaya. Antarctic cryoconite generally remain frozen at the glacier surface while only a few of them are exposed during summer [1,22,23,24]. Cryosphere constitute a major part of the land and hydrosphere, research on the cryoconite is of great significance

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call