Abstract

The membrane localization and properties of two halogenated cyclobutanes were examined using 2H and 19F NMR. The common predictors of potency indicate that these two compounds will have anesthetic activity; however, 1,2-dichlorohexafluorocyclobutane (c(CCIFCCIFCF2CF2)) is not an effective anesthetic, whereas 1-chloro-1,2,2-trifluorocyclobutane (c(CCIFCF2CH2CH2)) is an effective general anesthetic. Using 2H NMR, the effect of these compounds on the acyl chain packing in palmitoyl (d31) oleoylphosphatidylcholine membranes was examined. The addition of the anesthetic c(CCIFCF2CH2CH2) results in small increases in the segmental order near the headgroup, whereas segments deeper in the bilayer show decreases in order. These results are consistent with those obtained previously for halothane, isoflurane, and enflurane. On the addition of the nonanesthetic c(CCIFCCIFCF2CF2), the segmental order in vitually unchanged, except for a slightly changed order near the segents 10-12 of the palmitoyl chains. These results, and the 19F chemical shifts, indicate that the anesthetic c(CCIFCF2CH2CH2) exhibits a preference for the membrane interface, as do the other general anesthetics, whereas the nonanesthetic c(CCIFCIFCF2CF2) resides within the membrane hydrocarbon core. The compound c(CCIFCCIFCF2CF2) and other nonanesthetic halocarbons have lower molecular dipole moments compared to effective anesthetic halocarbons, which may account for their altered distribution within the membrane. These data strongly suggest that preferential localization of a halocarbon within the membrane interface is a predictor of anesthetic potency. Furthermore, the data indicate that the properties and forces in the membrane interface deserve consideration as mediators of anesthetic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.