Abstract

BackgroundLife history characteristics are considered important factors influencing the evolutionary processes of natural populations, including the patterns of population genetic structure of a species. The sister species Cottus hangiongensis and C. koreanus are small bottom-dwelling freshwater sculpin fishes from South Korea that display marked life history divergence but are morphologically nearly indistinguishable. Cottus hangiongensis evolved an ‘amphidromous’ life history with a post-hatching pelagic larval phase. They spawn many small eggs in the low reaches of rivers, and hatched larvae migrate to the sea before returning to grow to maturity in the river mouth. In contrast, C. koreanus evolved a ‘fluvial’ landlocked type with benthic larvae. They release a smaller number of larger eggs, and the larvae undergo direct development, remaining benthic in the upstream rivers throughout their entire lives. We tested whether there were differences in patterns and levels of within-population genetic diversities and spatial population structure between the two closely related Korean sculpins using mitochondrial DNA control region sequences and seven nuclear microsatellite loci.ResultsThe combined analyses of both marker sets revealed that C. hangiongensis harboured considerably higher levels of within-population genetic diversities (e.g. haplotype/allelic richness, heterozygosities) than C. koreanus. In contrast, the fluvial sculpin exhibited noticeably more spatial population structure than did the amphidromous sculpin, as suggested by pairwise FST statistics. The finding that C. hangiongensis individuals comprised a single random mating population across the east-flowing river basins in the Korean Peninsula, whereas C. koreanus individuals comprised genetically discrete individual populations, was further supported by an individual-based Bayesian population assignment and also factorial correspondence analyses.ConclusionsThe higher genetic diversity, but lower population structure, of the amphidromous sculpin relative to the fluvial sculpin may have resulted from its greater larval dispersal and also possibly, higher fecundity accompanied by an amphidromous life history. Hence, we conclude that contrasting early life histories – including the presence or absence of the pelagic larval phase – may have led to divergent patterns of within-population genetic diversities and spatial population structure between the sister Cottus species following speciation from a common ancestor of marine sculpin.

Highlights

  • Life history characteristics are considered important factors influencing the evolutionary processes of natural populations, including the patterns of population genetic structure of a species

  • While four out of eight mtDNA haplotypes (CH 1, 3, 7 and 8) in C. hangiongensis were shared by 2–6 populations, only four of 24 haplotypes (CK 6, 7, 9 and 16) in C. koreanus were shared between two populations, and the remaining 20 haplotypes were private haplotypes found in a single population (Fig. 3)

  • The haplotype networks of C. hangiongensis and C. koreanus could be connected by sixteen mutational steps (C. hangiongensis–CH 1 to C. koreanus–CK 1), and no haplotypes were shared between the two species (Fig. 3)

Read more

Summary

Introduction

Life history characteristics are considered important factors influencing the evolutionary processes of natural populations, including the patterns of population genetic structure of a species. Thought to play a pivotal role in population dynamics, colonization of novel habitats and geographic distribution of freshwater and marine fishes [9] In this regard, the presence or absence of a post-hatching planktonic larval period at an early life history stage has been suggested to be a key component in characterizing the degree and pattern of population connectivity or geographic population structure in both marine [10, 11] and freshwater species [3, 5, 6, 12]. Studying evolutionarily closely related species with contrasting life history types over small geographic scales will provide a good opportunity for directly testing the influences of the larval phase on population connectivity. It will allow us to determine the role of life history in shaping the patterns of intraspecific genetic variation in light of the evolution of geographic population structure [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call