Abstract
This study examines hydration–diffusion in the metaluminous haplogranite system at 200 MPa H2O and 800–300°C. At 800°C hydration is accompanied by melting and uphill diffusion of sodium from anhydrous glass toward the region of hydration and melting, whereas potassium diffuses away from the hydration front and into anhydrous glass. Silicon and aluminum are simply diluted upon hydration. There is no change in molecular Al/(Na + K) throughout the entire hydration-diffusion aureole and, therefore, (1) there is no loss of alkalis to the vapor, and (2) K migrates to replace Na in order to maintain local charge balance required by IVAl. Alkali diffusion occurs over a viscosity contrast from 104.1 Pa s in hydrous liquid to ≈1011.8–1013.5 Pa s in anhydrous glass. From these results, we interpret that: (1) Na is structurally or energetically favored over K as a charge-balancing cation for IVAl in hydrous granitic liquids, whereas the opposite behavior has been observed for anhydrous melts, and (2) the diffusion of alkalis through silicate melts is largely independent of viscosity. Results from 600°C are similar to those at 800°C, but hydration at 300°C involves a loss of Na and concomitant increase in molar Al/(Na + K) in the hydration zone due to hydrogen-alkali exchange between fluid and glass. Hydration behavior at 400°C is transitional between those at 300°C and 600°C, suggesting that the change in hydration mechanism occurs near the glass transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.