Abstract

Major histocompatibility complex (MHC) class I and II products are specialized to present antigens via different intracellular processing routes. Peptides originating from proteins in the cytoplasm can gain access to class I peptide-binding grooves, most likely in the rough endoplasmic reticulum. Peptides from proteins in acidic endocytic vacuoles gain access to class II. It has been proposed that MHC class I products also can capture peptides from "exogenous" or noninfectious sources, and this assumption underlies the use of intact proteins as vaccines for CD8+ cytotoxic T lymphocytes. Here we describe quantitative information comparing the efficacy of peptide presentation from exogenous proteins by administering a class I- and II-restricted peptide within the same context, the CDR3 loop of the VH domain of a self immunoglobulin. Antigen-presenting cells (APC), including primary dendritic cells, efficiently present an influenza hemagglutinin peptide from the immunoglobulin (Ig) carrier (50% maximal response at 10 nM Ig-HA) to an MHC class II-restricted T cell. In contrast, these same APC are unable to present an influenza nucleoprotein (NP) peptide from the same context (1 microM Ig-NP) to an MHC class I-restricted T cell. Ig-NP DNA transfectants do present the nucleoprotein viral peptide on class I. Thus, peptides within the complementarity-determining region loops of Ig carriers can be presented on class I or II MHC products, but the endocytic compartment, when offered MHC class I- and II-restricted peptides within the same carrier protein context, favors presentation by class II by at least 1000-fold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call