Abstract

A previous study in the bovine mammary epithelial cell line BME-UV1 demonstrated that suppression of the phosphatidylinositol-4,5-biphosphate 3 kinase (PI3K)/AKT (somatotropic) signaling pathway was required for transforming growth factor β1 (TGFβ1)-induced programmed cell death (PCD). To investigate whether this is a universal mechanism for TGFβ1 to induce PCD in bovine mammary epithelium, we compared TGFβ1 modulation of PI3K/AKT and its role in PCD in 2 bovine mammary epithelial cell lines: MAC-T and BME-UV1. In MAC-T cells, TGFβ1 promoted cell survival, and this paralleled a reduction in PI3K/AKT activity, rather than an increase. In BME-UV1 cells, TGFβ1 induced PCD, and this was accompanied by a time-dependent effect on PI3K/AKT activity, including an initial significant increase in the phosphorylation of AKT at 3 h, followed by a reduction between 12 and 24 h, and then an increase at 48 h. Inhibition of AKT activity enhanced TGFβ1-induced PCD in BME-UV1 cells but had no effect on MAC-T cells, suggesting that TGFβ1 mediates PCD in BME-UV1 cells through suppression of AKT activity. Inhibition of TGFβ receptor type I (TβRI) kinase activity completely abrogated TGFβ1-induced PCD in BME-UV1 cells but had no effect on TGFβ1-induced suppression of PCD in MAC-T cells, demonstrating that TGFβ1-induced PCD in BME-UV1 cells is dependent on TβRI/SMAD signaling. These and previous observations suggest that the different effects of TGFβ1 on PCD in these cell lines might involve noncanonical signaling pathways other than PI3K/AKT, and may reflect their different lineages. Future studies should address this finding, taking into consideration the effect that different culture conditions might have on cell phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.