Abstract

Crowded environments inside cells and biological fluids greatly affect protein stability and activity. PDC-109, a polydisperse oligomeric protein of the bovine seminal plasma selectively binds choline phospholipids on the sperm cell surface and causes membrane destabilization and lipid efflux, leading to acrosome reaction. PDC-109 also exhibits chaperone-like activity (CLA) and protects client proteins against various kinds of stress, such as high temperature and low pH. In the present work, we have investigated the effect of molecular crowding on these two different activities of PDC-109 employing Dextran 70 (D70) – a widely used polymeric dextran – as the crowding agent. The results obtained show that presence of D70 markedly increases membrane destabilization by PDC-109. Isothermal titration calorimetric studies revealed that under crowded condition the binding affinity of PDC-109 for choline phospholipids increases approximately 3-fold, which could in turn facilitate membrane destabilization. In contrast, under identical conditions, its CLA was reduced significantly. The decreased CLA could be correlated to reduced surface hydrophobicity, which was due to stabilization of the protein oligomers. These results establish that molecular crowding exhibits contrasting effects on two different functional activities of PDC-109 and highlight the importance of microenvironment of proteins in modulating their functional activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.