Abstract

As climate change intensifies, fires events are predicted to increase in forest ecosystems. Fire alters the ecosystem structure and consequently, the hydrological cycle. However, little is known about the impacts of forest fire on stemflow. A field experiment was conducted to evaluate the short-term response of stemflow production to low-severity fire in a coniferous and broadleaved mixed forest. Results demonstrated low-severity fire changed stemflow yield and had insignificant effect on the correlation between stemflow efficiency and rainfall or plant morphological variables. In unburned site Quercus acutissima and Pinus massoniana and in burned site Q. acutissima and P. massoniana, stemflow percentage averaged 3.86, 0.37, 1.20, and 0.47 %, whereas funneling ratio averaged 38.8, 4.2, 11.4, and 5.1, respectively. Fire substantially decreased the stemflow percentage and funneling ratio of Q. acutissima (P < 0.05) and slightly enhanced P. massoniana (P > 0.05). The responses of stemflow production to fire differed significantly between oak and pine trees. Fire made Q. acutissima become less effective in funneling rain to the forest ground, which is attributed to that the scaly bark was burned to highly furrowed bark that delivers less water to tree base. Burned P. massoniana was more productive in draining stemflow relative to unburned trees and is attributed to the bark which was still flaky regardless of. Additionally, the higher canopy openness allows more rain to funnel to the trunk. Stemflow efficiency was reduced in response to fire and limited the transfer of water and nutrients from canopy to soil and can reduce the competitiveness of Q. acutissima after fire disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.